Образующая конуса равна 26 и наклонена к плоскости основания под углом 60°. Найдите площадь боковой поверхности конуса.
Образующая конуса равна 26 и наклонена к плоскости основания под углом 60°. Найдите площадь боковой поверхности конуса.
Площадь осевого сечения цилиндра равна 10. Площадь его боковой поверхности равна:
Объем конуса равен 5, а его высота равна Найдите площадь основания конуса.
Образующая конуса равна 17, а высота — 8 . Найдите площадь боковой поверхности конуса.
Точки A, B, C лежат на большой окружности сферы так, что треугольник ABC — равносторонний. Если AB = то площадь сферы равна:
Плоскость, удаленная от центра сферы на 8 см, пересекает ее по окружности длиной 12π см. Найдите площадь сферы.
ABCDA1B1C1D1 — прямоугольный параллелепипед такой, что
Через середины ребер AA1 и BB1 проведена плоскость (см.рис.), составляющая угол 60° с плоскостью основания ABCD. Найдите площадь сечения параллелепипеда этой плоскостью.
Через точку A высоты SO конуса проведена плоскость, параллельная основанию. Определите, во сколько раз площадь основания конуса больше площади полученного сечения, если SA : AO = 2 : 3.
Секущая плоскость пересекает сферу по окружности, радиус которой равен 2. Если расстояние от центра сферы до секущей плоскости равно 4, то площадь сферы равна:
В тетраэдре SABC с ребром 24 точка P принадлежит SC так, что
и
Найдите площадь сечения тетраэдра плоскостью MNP.
Найдите площадь боковой поверхности правильной треугольной пирамиды, если длина биссектрисы ее основания равна и плоский угол при вершине
В основании пирамиды лежит прямоугольный треугольник, длина гипотенузы которого равна 6, острый угол равен 30°. Каждая боковая грань пирамиды наклонена к плоскости основания под углом, равным Найдите площадь боковой поверхности пирамиды.
Найдите площадь полной поверхности прямой треугольной призмы, описанной около шара, если площадь основания призмы равна 7,5.
Сфера проходит через все вершины нижнего основания правильной четырехугольной призмы и касается ее верхнего основания. Найдите площадь сферы, если площадь диагонального сечения призмы равна а высота призмы в два раза меньше радиуса сферы.
Куб вписан в правильную четырехугольную пирамиду так, что четыре его вершины находятся на боковых ребрах пирамиды, а четыре другие вершины — на ее основании. Длина стороны основания пирамиды равна 2, высота пирамиды — 6. Найдите площадь S поверхности куба. В ответ запишите значение выражения 4S.
ABCA1В1С1 — правильная треугольная призма, у которой сторона основания и боковое ребро имеют длину 6. Через середины ребер АС и BB1 и вершину A1 призмы проведена секущая плоскость. Найдите площадь сечения призмы этой плоскостью.
ABCDA1B1C1D1 — куб, длина ребра которого равна Сфера проходит через его вершины В и D1 и середины ребер BB1 и CC1. Найдите площадь сферы S, в ответ запишите значение выражения
Квадрат, длина диагонали которого равна 8, лежит в плоскости α. Сфера касается плоскости α в точке пересечения диагоналей квадрата. Найдите площадь сферы, если расстояние от центра сферы до вершины квадрата равно
Цилиндр пересечен такой плоскостью, параллельной оси цилиндра, что в сечении получился квадрат площадью 100. Найдите значение выражения где S — площадь боковой поверхности цилиндра, если расстояние от оси цилиндра до плоскости сечения равно
Через вершину Р конуса и хорду АВ его основания, стягивающую дугу в 90°, проведено сечение. Найдите значение выражения где S — площадь боковой поверхности конуса, если периметр этого сечения равен
и